Adhesive Forces between A1 Domain of von Willebrand Factor and N-terminus Domain of Glycoprotein Ibα Measured by Atomic Force Microscopy.

نویسندگان

  • Hiroaki Tobimatsu
  • Yuichiro Nishibuchi
  • Ryo Sudo
  • Shinya Goto
  • Kazuo Tanishita
چکیده

AIM von Willebrand factor (VWF) plays an important role in the regulation of hemostasis and thrombosis formation, particularly under a high shear rate. However, the adhesive force due to the molecular interaction between VWF and glycoprotein Ibα (GPIbα) has not been fully explored. Thus, we employed atomic force microscopy to directly measure the adhesive force between VWF and GPIbα. METHODS We measured the adhesive force between VWF and GPIbα at the molecular level using an atomic force microscope (AFM). An AFM cantilever was coated with recombinant N-terminus VWF binding site of GPIbα, whereas a cover glass was coated with native VWF. RESULTS The adhesive force at the molecular level was measured using an AFM. In the presence of 1 μg/mL VWF, the adhesion force was nearly 200 pN. As per the Gaussian fit analysis, the adhesive force of a single bond could have been 54 or 107 pN. CONCLUSION Our consideration with the Gaussian fit analysis proposed that the adhesive force of a single bond could be 54 pN, which is very close to that obtained by optical tweezers (50 pN).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Platelet interaction with von Willebrand factor is enhanced by shear-induced clustering of glycoprotein Ibα.

Initial platelet arrest at the exposed arterial vessel wall is mediated through glycoprotein Ibα binding to the A1 domain of von Willebrand factor. This interaction occurs at sites of elevated shear force, and strengthens upon increasing hydrodynamic drag. The increased interaction requires shear-dependent exposure of the von Willebrand factor A1 domain, but the contribution of glycoprotein Ibα...

متن کامل

Force-sensitive autoinhibition of the von Willebrand factor is mediated by interdomain interactions.

Von Willebrand factor (VWF) plays a central role in hemostasis. Triggered by shear-stress, it adheres to platelets at sites of vascular injury. Inactivation of VWF has been associated to the shielding of its adhesion sites and proteolytic cleavage. However, the molecular nature of this shielding and its coupling to cleavage under shear-forces in flowing blood remain unknown. In this study, we d...

متن کامل

Simultaneous exposure of sites in von Willebrand factor for glycoprotein Ib binding and ADAMTS13 cleavage: studies with ristocetin.

OBJECTIVE Platelet-bound von Willebrand factor (VWF) was recently demonstrated to be a better substrate for ADAMTS13, suggesting that 1 conformational change exposes both the glycoprotein Ibα binding site in the A1 domain and the ADAMTS13 cleavage site in the A2 domain. Because ristocetin induces VWF to bind glycoprotein Ibα in the absence of shear stress, we evaluated whether it could also enh...

متن کامل

Force-induced on-rate switching and modulation by mutations in gain-of-function von Willebrand diseases.

Mutations in the ultralong vascular protein von Willebrand factor (VWF) cause the common human bleeding disorder, von Willebrand disease (VWD). The A1 domain in VWF binds to glycoprotein Ibα (GPIbα) on platelets, in a reaction triggered, in part, by alterations in flow during bleeding. Gain-of-function mutations in A1 and GPIbα in VWD suggest conformational regulation. We report that force appl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of atherosclerosis and thrombosis

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2015